Iksung Kang

275D Li Ka Shing Center, Berkeley, CA 94720, USA

Education

Massachusetts Institute of Technology	Cambridge, MA
Doctor of Philosophy, Department of Electrical Engineering and Computer Science	2020 – 2022
Massachusetts Institute of Technology	Cambridge, MA
Master of Science, Department of Electrical Engineering and Computer Science	2017 – 2020
Seoul National University Bachelor of Science, Department of Electrical and Computer Engineering (as class valedictorian)	Seoul, South Korea 2011 – 2017

EXPERIENCE

Postdoctoral Fellow

University of California - Berkeley, Department of Neuroscience (Advisors: Na Ji, Stella X. Yu) Jul 2022 - Present

- **Computational Microscopy**: Adaptive optical control of high-resolution microscopy systems using self-supervised machine learning.
- Application living samples: neuroscience: *In vivo* structural and functional activity imaging of the mouse brain, biological signal processing, and data analysis.
- Software methods: Differentiable rendering (e.g., neural fields) for linear inverse problems.
- Hardware methods: Widefield and two-photon fluorescence microscopy, adaptive optics.

Graduate Research Assistant

Massachusetts Institute of Technology, Mechanical Engineering (Advisor: George Barbastathis) Jan 2019 – May 2022

- **Computational Micro/Nanoscale Imaging**: Optimizing high-resolution non-invasive imaging workflows to maximize speed using supervised and self-supervised deep learning.
- Application non-living samples: manufacturing inspection: Rapid analysis and inspection of manufacturing defects in 16-nm process semiconductors achieving speeds up to 100 times faster than conventional techniques.
- **Software methods**: Supervised and self-supervised deep learning (e.g., convolutional/recurrent neural networks, transformers) for non-linear inverse problems.
- Hardware methods: Phase retrieval, X-ray ptycho-tomography, digital holography.
- **Collaboration**: Argonne National Laboratory (U.S.), Paul Scherrer Institute (Switzerland), MIT Department of Aeronautics and Astronautics.

Undergraduate Researcher	Seoul, South Korea
Seoul National University, Electrical and Computer Engineering (Advisor: Jongho Lee)	2016
Undergraduate Research Intern	Seoul, South Korea
Seoul National University, Graduate School of Convergence Science and Technology	2017

PATENTS

 Adaptive optical correction in two-photon fluorescence microscopy with neural fields U.S. Patent Application No. 63/707,628, filed October 15, 2024 Co-inventors: Kang I, Ji N.

Preprints

- Adaptive optical correction for in vivo two-photon fluorescence microscopy with neural fields <u>Kang I</u>, Kim H, Natan R, Zhang Q, Yu SX, Ji N <u>bioRxiv</u> (2024) 2024.10.20.619284. https://doi.org/10.1101/2024.10.20.619284 (under review at *Nature Methods*) Co-corresponding author.
- Optical segmentation-based compressed readout of neuronal voltage dynamics Kim S, Ko G, Kang I, Tian H, Fan LZ, Li Y, Cohen AE, Wu J, Dai Q, Choi MM *bioRxiv* (2023) 2023.11.10.566599. https://doi.org/10.1101/2023.11.10.566599 (under review at *Nature Methods*) Co-author.

Cambridge, MA

Berkeley, CA

JOURNAL PUBLICATION

11. Coordinate-based neural representations for computational adaptive optics in widefield microscopy

Kang I, Zhang Q, Yu SX, Ji N Nature Machine Intelligence (2024) 6, 714–725. (IF: 18.8 (2023), Springer Nature) Co-Corresponding author.

10. Accelerated deep self-supervised ptycho-laminography for three-dimensional nanoscale imaging of integrated circuits

Kang I, Jiang Y, Holler M, Guizar-Sicairos M, Levi AFJ, Klug J, Vogt S, Barbastathis G Optica (2023) 8, 1000-1008. (IF: 8.4 (2023), Optica Publishing Group) First author.

9. Attentional Ptycho-Tomography (APT) for three-dimensional nanoscale X-ray imaging with minimal data acquisition and computation time

Kang I, Wu Z, Jiang Y, Yao Y, Klug J, Vogt S, Barbastathis G
 Light: Science & Applications (2023) 12(131). (IF: 20.6 (2023), Springer Nature)
 Co-first author.

8. Three-dimensional nanoscale imaging via deep neural networks and multi-angle ptychography (RAPID)

<u>Wu Z</u>, <u>Kang I</u>, Yao Y, Jiang Y, Deng J, Klug J, Vogt S, Barbastathis G *eLight* (2023) 3(7). (IF: 27.2 (2023), Springer Nature) Co-first author.

7. Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network

Kang I, de Cea M, Xue J, Li Z, Barbastathis G, Ram R *Optica* (2022) 9(10), 1149-1155. (IF: 8.4 (2023), Optica Publishing Group) Co-first author.

6. Dynamical machine learning volumetric reconstruction of objects' interiors from limited angular views

Kang I, Goy A, Barbastathis G
Light: Science & Applications (2021) 10(74). (IF: 20.6 (2023), Springer Nature)
Corresponding author.

- Recurrent neural network reveals transparent objects through scattering media Kang I, Pang S, Zhang Q, Fang N, Barbastathis G *Optics Express* (2020) 29(4), 5316-5326. (IF: 3.2 (2023), Optica Publishing Group) Corresponding author.
- 4. Deep residual learning for low-order wavefront sensing in high-contrast imaging systems <u>Allan G</u>, Kang I, Douglas E, Barbastathis G, Cahoy K *Optics Express* (2020) 28(18), 26267-26283. (IF: 3.2 (2023), Optica Publishing Group) Co-first author.
- 3. On the interplay between physical and content priors in deep learning for computational imaging

Deng M, Li S, Zhang Z, **Kang I**, Fang N, Barbastathis G *Optics Express* (2020) 28(16), 24152-24170. (IF: 3.2 (2023), Optica Publishing Group) Co-author.

2. Phase Extraction Neural Network (PhENN) with Coherent Modulation Imaging (CMI) for phase retrieval at low photon counts

Kang I, Zhang F, Barbastathis G *Optics Express* (2020) 28(15), 21578-21600. (IF: 3.2 (2023), Optica Publishing Group)
Corresponding author.

 Learning to synthesize: Robust phase retrieval at low photon counts Deng M, Li S, Goy A, Kang I, Barbastathis G *Light: Science & Applications* (2020) 9(36). (IF: 20.6 (2023), Springer Nature) Co-author.

Conference Proceedings & Presentations

- Aberration measurement and correction for ultrafast two-photon fluorescence imaging Zhu J, Natan R, Zhong J, Kang I, Ji N SPIE Photonics West (2025). https://bit.ly/40taADQ
- Computational adaptive optics for in vivo two-photon fluorescence microscopy using coordinate-based neural representations Kang I, Zhang Q, Yaeger C, Pham T, Yu SX, Harnett M, Ji N SPIE Photonics West (2024) 12851-9. https://doi.org/10.1117/12.3008468 Speaker, oral presentation.
- 9. On the use of deep learning for three-dimensional computational imaging Barbastathis G, Pang S, Kang I, Wu Z, Liu Z, Guo Z, Zhang F SPIE Photonics West (2023) 12445. https://doi.org/10.1117/12.2655261 Speaker, oral presentation.
- Deep self-supervised learning for computational adaptive optics in widefield microscopy Kang I, Zhang Q, Ji N SPIE Photonics West (2023) 12388-34. https://doi.org/10.1117/12.2658934 Speaker, oral presentation.
- 7. Optical segmentation for compressed readout on sub-millisecond neuronal circuit dynamics Diffractive Multisite Optical Segmentation Assisted Image Compression: DeMOSAIC) Kim S, Wu J, Kang I, Ko G, Tian H, Fan LZ, Li Y, Cohen AE, Dai Q, Choi MM Frontiers in Neurophotonics (FiNs) (2022).
- 6. Photon-starved X-ray Ptychographic Imaging using Spatial Pyramid Atrous Convolution End-to-end Reconstruction (PtychoSPACER)
 Wu Z, Kang I, Zhou T, Coykendall V, Ge B, Cherukara MJ, Barbastathis G Computational Optical Sensing and Imaging (2022) CF1D.6. https://doi.org/10.1364/COSI.2022.CF1D.6
- Adaptive image segmentation for crosstalk-free high-speed compressive imaging Kim S, Wu J, Kang I, Li Y, Tian H, Fan LZ, Cohen AE, Dai Q, Choi MM Focus on Microscopy (FOM) (2022).
- 4. Three-dimensional reconstruction of integrated circuits by single-angle X-ray ptychography with machine learning

Kang I, Yao Y, Deng J, Klug J, Vogt S, Honig S, Barbastathis G
 Computational Optical Sensing and Imaging (2021) CTu6A.4. https://doi.org/10.1364/COSI.2021.CTu6A.4
 Speaker, oral presentation.

- 3. Probability of error as an image metric for the assessment of tomographic reconstruction of dense-layered binary-phase objects Kang I, Barbastathis G SPIE Photonics West (2021) 116530T. https://doi.org/10.1117/12.2577264 Speaker, oral presentation.
- Deep neural networks to improve the dynamic range of Zernike phase-contrast wavefront sensing in high-contrast imaging systems
 Allen C. Kang L. Deugles F. N'Diana M. Parhastethia C. Cahou K.

Allan G, Kang I, Douglas E, N'Diaye M, Barbastathis G, Cahoy K SPIE Astronomical Telescopes + Instrumentation (2020) 1144349. https://doi.org/10.1117/12.2562927 1. A portable, low-cost, 3D-printed main magnetic field system for magnetic imaging Kang I

IEEE Engineering in Medicine and Biology Society (2017). https://doi.org/10.1109/EMBC.2017.8037619 Speaker, oral presentation.

Awards, Honors & Certifications	
Ph.D. Study-Abroad Scholarship	2017–2022
Korea Foundation for Advanced Studies (KFAS)	South Korea
Kaufman Teaching Certificate Program (KTCP)	2022
Massachusetts Institute of Technology	Cambridge, MA
Biophysics Program Certificate	2019
Massachusetts Institute of Technology	Cambridge, MA
Summa Cum Laude Award	2017
Seoul National University	Seoul, South Korea
Eminence Scholarship	2015, 2016
Seoul National University	Seoul, South Korea
Merit-Based Scholarship	2012, 2015
Seoul National University	Seoul, South Korea
Superior Academic Performance Scholarship	2011
Seoul National University	Seoul, South Korea

INVITED TALKS & SEMINARS

Guest Lecture	Mar 2025 (scheduled)
PHYSICS H190 - AI for Optical Microscopy	University of California, Berkeley, USA
Invited Talk	Nov 2024
Center for Adaptive Optics Fall Science Retreat	University of California, Los Angeles, USA
Invited Talk	Apr 2024
Graduate School of Data Science, Seoul National University	Seoul, South Korea
Guest Speaker in Mini-symposium – Computational Ima	ging in Neurophotonics Jan 2023
Seoul National University	Seoul, South Korea
Speaker in Photobears Lightning talk series	Sep 2022
University of California, Berkeley	Berkeley, CA
Invited Talk	Apr 2022
Aerospace Controls Laboratory (ACL), Massachusetts Institute of Techn	nology Cambridge, MA
Research seminar	Oct 2021
Computational Imaging Lab, Princeton University	Online
Invited Talk	Oct 2021
CRISP (Computation, Representation, and Inference in Signal Processi	ng) Group, Harvard University Cambridge, MA
Research seminar	Sep 2021
University of California, Los Angeles	Online
Research seminar	Sep 2021
Ji Lab, University of California, Berkeley	Online
Invited Talk	Feb 2021
Neurophotonics Lab, Seoul National University	Seoul, South Korea

MENTORING EXPERIENCE

Course Project Mentor

Massachusetts Institute of Technology

• Physical Systems Modeling and Design Using Machine Learning: Mentored a student group of 3 graduate students for their end-term project on the image segmentation of noisy ultrasonic images.

 $\circ~$ Mentored students: April Marie Anlage, Yiwen Huang, Itay Fayer.

Course Project Mentor

Massachusetts Institute of Technology

- Learning Machines: Mentored a student group of 7 undergraduate and graduate students in total for their end-term projects on (1) the reaction modeling to facilitate pharmaceutical process development using machine learning; and (2) the control of autonomous ocean vehicles using reinforcement learning.
- Mentored students: (1) Natalie Suzanne Eyke, Benjamin David Russell, Robyn Wen-Yi Lee; and (2) Timothy Samuel Fountain, Warner A. McGee, HongSeok Cho, Bouke K. Edskes.

Volunteer

Korea Foundation for Advanced Studies Overseas Program

• Participated as a volunteer in the Kingdom of Cambodia for a week, teaching children physics and building homes for the residents.

TEACHING EXPERIENCE

Kaufman Teaching Certificate Program (KTCP)

Teaching & Learning Laboratory, Massachusetts Institute of Technology

- **Workshop**: Completed seven workshops to develop teaching skills as part of the teaching certificate program. A major part of the program involved introducing students to relevant research in teaching and learning and laying out future teaching models.
- **Microteaching sessions**: Presented two microteaching sessions that were videotaped, where I received feedback on my performance regarding my teaching and provided feedback to other participants.

Teaching Assistant

Massachusetts Institute of Technology

• Mentored course research projects, contributed to curriculum design, conducted after-hour office hours, and graded assignments. Class taught totaled around 40 students and comprised course research projects on the connection between machine learning and physical systems.

LEADERSHIP

Group Leader	2019-2020
EECS Korean Graduate Students Society, Massachusetts Institute of Technology	Cambridge, MA
\circ Organized social gatherings and networking to foster cohesion among EECS Korean	graduate students.
Founder & Group Leader	2019 - 2021
Korean Graduate Students Swimming Club, Massachusetts Institute of Technology	Cambridge, MA
$\circ~$ Organized a swimming session twice a week and held social events among swimming	club members.

Event Officer	2018 - 2019
Korean Graduate Students Association, Massachusetts Institute of Technology	Cambridge, MA
a Planned and organized social events to facilitate networking among Korean (rraduato students

• Planned and organized social events to facilitate networking among Korean graduate students.

Group Leader

Sidney-Pacific Inter-Cultural Exchange Program (SPICE), Massachusetts Institute of Technology Cambridge, MA

• Organized social gatherings for networking among group members from diverse backgrounds living in Sidney-Pacific graduate residence.

ics and

Kingdom of Cambodia

Feb 2018

Spring 2022 Cambridge, MA

Spring 2020 Cambridge, MA

2018

Spring 2022 Cambridge, MA

Spring 2020 Cambridge, MA

Event Chair

EECS Graduate Students Association, Massachusetts Institute of Technology

• Organized and led weekly coffee hours to facilitate social gathering and networking among international EECS students.

Student Ambassador

Kakao Ventures

 Contributed to the creation of a startup ecosystem on/off campus in Cambridge and worked as a liaison to Kakao Ventures in South Korea.

Sergeant

Korean Augmentation to the U.S. Army (KATUSA)

 Worked as the Information Assurance Security Officer and a deputy of Information Assurance Manager (IAM) / Systems Administrator (SA) in accordance with AR 25-2 in Information Management Office, 8th Army NCO Academy and KATUSA Training Academy.

Reviewer Activities

Light: Science & Applications, Scientific Reports Nature Portfolio, United Kingdom

Optica, Optics Letter, Optics Express, Applied Optics

Optica Publishing, United States

IEEE Transactions on Medical Imaging

IEEE, United States

Reference

George Barbastathis

Ph.D advisor Professor of Mechanical Engineering at Massachusetts Institute of Technology Email: gbarb@mit.edu (admin: derek978@mit.edu)

Na Ji

Postdoc advisor Professor of Physics and Neurobiology at University of California, Berkeley Email: jina@berkeley.edu (admin: georgelu@berkeley.edu)

Stella X. Yu

Postdoc advisor Professor of Electrical and Computer Engineering at University of Michigan, Ann Arbor Email: stellayu@umich.edu

Stefan Vogt

Collaborator & Thesis committee member, he/his/him Associate Division Director at Argonne National Laboratory Email: svogt@anl.gov Summer 2018 Cambridge, MA

Feb 2013 – Nov 2014 South Korea

2018

Seoul, South Korea